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AbstractAbstractAbstractAbstract    
 

 This paper investigates the output of invariant equations connection between the control of a 

vehicle and the trajectory of its movement. A control function is the angle Ackerman, defined as 

the difference between the angles of rotation of the front wheels of the car. The relations are 

illustrated by calculating the radius of the curve of the trajectory of the moving car and the 

required space for the car to move safely. 
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1 Introduction 
 Technical possibilities of control of dynamic systems based on the use of modern 

technologies have caused the recent emergence of a large number of works on the theory of 

control of the vehicle. The tasks of navigation [1,2], the control of the trajectory of the 

movement of [3-7], autonomous driving and maneuvering with small bending radius of a turn 

[8,9] are aimed at improving the safety and to increase the comfort, stimulated the emergence in 

recent years of new mathematical models. Most, but surprisingly not all, studies such as these to 

one degree or another are based on The Ackermann Principle of Steering - a great invention 

made 195 years ago. 

 

2 2 2 2 Historical information 
 Rudolph Ackermann (born on 20

th
 of April 1764 in Stolberg, Electorate of Saxony – died 

on 30
th

 of March 1834 in London) was an Anglo-German bookseller, an inventor, a lithographer, 

a publisher and a businessman. He was born at Stolberg, in Saxony, where he attended the Latin 

school. His wish to study at the university was made impossible by the lack of financial means, 

and he therefore became a saddler like his father. In 1801 he patented a method for rendering 

paper and waterproof cloth and erected a factory in Chelsea to make it. He was one of the first to 

illuminate his own premises with gas. Indeed the introduction of lighting by gas owed much to 

him. After the Battle of Leipzig, Ackermann collected nearly a quarter of a million pounds 

sterling for the German casualties. He later began to manufacture colors and thick carton paper 

for landscape and miniature painters. He published many illustrated volumes of topography and 

travel, including The Microcosm of London (3 volumes, 1808–111), Westminster Abbey (2 

volumes, 1812), The Rhine (1820) and The World in Miniature (43 volumes, 1821–6). He also 

patented the Ackermann steering geometry [10]. 

http://en.wikipedia.org/wiki/Rudolph_Ackermann  

 

 

 
Rudolph Ackermann, portrait by François Mouchet between 1810 and 1814. (National 

Portrait Gallery, London) 

. 



 3 

 

Ackermann’s Room by C.A. Pugin ca. 1809 

Source: V&A (Museum No. E.3027-1903) 

 

 Son of a Bavarian coach builder, had spent a number of years designing coaches for 

English gentlemen in London, where he made his home. One of his more notable commissions 

was for the design of Admiral Nelson's funeral car in 1805. The Ackermann steering linkage was 

not actually Ackermann's invention, although he took out the British patent [10] (195 years ago) 

in his name and promoted the introduction of the running gear of which the linkage was a part 

(Fig. 1). The actual inventor was Ackermann's friend George Lankensperger of Munich, coach 

maker to the King of Bavaria [11].  . The advantage of being able to turn a carriage around in a 

limited area without danger of oversetting was immediately obvious, and while there was 

considerable opposition by English coach makers to an innovation for which a premium had to 

be paid, the invention soon "made its way from its own intrinsic merit," as Ackermann predicted 

it would. "Safety, durability, efficiency and comfort characterize the useful invention" 

 

 

 

FIGURE 1.—Ackermann steering linkage of 1818, currently used in automobiles.  
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3 The law ofofofof    ssssteeringteeringteeringteering  
 The traditional description principle of the Ackermann steering consider a front-wheel-

steering 4W S vehicle that is turning to the left, as shown in Figure 2 [12] 

 
FIGURE 2. A front-wheel-steering vehicle and the Ackerman condition. 

 

When the vehicle is moving very slowly, there is a kinematic condition between the inner and 

outer wheels that allows them to turn slip-free. The condition is called the Ackerman condition 

and is expressed by 

l

w
io =− δδ cotcot  

Where iδ the steer angle of the inner is wheel, and oδ is the steer angle of the outer wheel. The 

inner and outer wheels are based on the turning centerO . 

 Figure 3 illustrates a vehicle turning left. So, the turning center O is on the left, and the 

inner wheels are the left wheels that are closer to the center of rotation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. A front-wheel-steering vehicle and steer angles of the inner outer wheels and angle 
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 The distance between the steer axes of the steerable wheels is called the track and is 

shown by w . The distance between the front and real axles is called the wheelbase and is shown 

by l . Track w  and wheelbase l  are considered as kinematic width and length of the vehicle. 

The mass center of a steered vehicle will turn on a circle with radius R  

δ222

2 cotlaR += , 

where δ is found using the inner and outer steer angles. 

2

cotcot
cot io δδ

δ
+

=  

 The following description works when one is solving a problem of building a vehicle, but 

it doesn’t work if one is solving a problem of navigation, control of the vehicle or the 

maneuvering. For solving those problems one has to take into account another control parameter, 

such as the difference of the turning angles of the right and the left front wheels  

 

rl δδϑ −= , 

where lδ  is the steer angle of the left wheel , and rδ is the steer angle of the right wheel. When 

the car takes a turn to the left, the following occurs: 

., oril δδδδ ==  

 From the equality of space in the turn left 
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 Further transformation leads to the following equation communication distance from the 

center of rotation O  to the mid-point of the rear axle of the car with a control parameter ϑ  

ϑcot
2

2

2

1 wll
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 Distance from the center of rotation O  to the points Cdcba ,,,,  are defined by the 

equalities  
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 The steer angles of the front wheels of the vehicle iδ  and oδ are connected with the radii 
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curvature of the trajectory of its characteristic points and the control parameter by the following 

equations:    
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The maximum Ackerman angle maxϑ   is evaluated by the construction specialities of the vehicle 

and is connected to the maximum turning angle of the wheel maxδ  (43-45 degrees, in reality 40-

41 degrees)  
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4 Calculating the trajectory  
 Control law establishes analytical connection between a control parameter and the 

movement of any fixed point of the vehicle. Let us introduce into consideration the radius of 

curvature of the trajectory of motion of the vehicle (point 1C ) by the following equality 

                               1cot
4

1
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−+







= ϑρ

l

w

l

w
l , max0 ϑϑ ≤< .                                        (1) 

 As is known, any flat curve is completely determined by its natural equation [13] 

 

( )skk = , 

where s  – a natural parameter (in this case, the distance travelled by car) 
ρ

1
=k  – the 

curvature of the trajectory.кривизна траектории.  

 In the aims of formalizing the problem of the control of the vehicle we will determine the 

curvature of the trajectory of the vehicle by an equation    

ds

d
k

ψ
= , 

where the angle ψ  – angle of curvature (the turning angle of the tangent to the trajectory of 

the movement of the vehicle), as the positive direction of the reference of the angle the left 

turning of the vehicle is chosen. When turning left ( ) ( ) 0,0 >> ssk ρ , when turning right 

( ) ( ) 0,0 << ssk ρ . 

 In this case the law of the control of a vehicle is expressed by the following equation: 
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Here rl δδϑ −= , when it’s 0max <≤− ϑϑ  – the vehicle makes a right turn, but when it’s 

max0 ϑϑ ≤<  – a left turn. 



 7 

 I.e. any control functions ( )tϑ  corresponds to only a trajectory of movement of the 

vehicle specified by equation (1). Conversely, any smooth trajectory of motion of the vehicle 

complies with the only function of the control, which is determined by the equation 
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 Parametric equations of a trajectory in this case can be obtained in the following form: 

( )

( )∫ ∫

∫ ∫











=











=

s

s

ddssky

ddsskx

0 0

0 0

.sin

,cos

σ

σ

σ

σ

 

  

 When the vehicle is moving with a constant speed V , we obtain the following trajectories 

equations in the parametric form 
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5 Examples 
 For example, let us consider the dependence of the curvature radius of the trajectory of 

the vehicle ρ  from the control parameter ϑ  and assign the required space for the car to be able 

to move without touching the walls in a circular motion of the car (Fig. 4). 

 
FIGURE 4. The safe pathway 
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The geometric parameters of some car models are given in Table 1. 

 
Table 1.  The geometric parameters of some car models [14] 

 
Car Vehicle 

length 

L (feet) 

Wheelbase 

l (feet) 
Overhang 

car 

a (feet) 

Track 
w (feet) l

w  

2010 Honda Civic Coupe 14.625 8.692 2.566 5.742 
 

0.660 

2010 Chevy Impala 16.7 9.208 2.62 6.075 
 

0.660 

2009 Dodge Avenger 
 

15.908 9.075 3.182 5.992 
 

0.660 

2010 Ford Taurus 16.908 9.408 2.114 6.35 
 

0.67 

2008 Chrysler Town & 
Country 

16.875 10.1 2.813 6.408 
 

0.63 

2010 Ford Escape + 
Hybrid 

14.642 8.592 2.486 5.925 
 

0.69 

2010 Honda Pilot 15.908 9.1 2.784 6.541 
 

0.72 

2010 Toyota Highlander 
Hybrid 

15.7 9.15 2.962 6.267 
 

0.68 

2009 Saturn Vue Hybrid 15.008 8.883 2.832 6.067 
 

0.68 

Hummer H3 15.625 9.325 2.561 7.083 
 

0.76 

2009 Dodge Grand 
Caravan 

16.875 10.1 2.837 6.408 
 

0.63 

2010 Ford Mustang 15.675 8.925 2.639 6.158 
 

0.69 

2010 Chevrolet Corvette 14.55 8.808 2.555 6.05 
 

0.69 

2010 Chevrolet Camaro 15.867 9.358 2.885 6.292 
 

0.67 

2010 Mercedes-Benz 
Sedan 

17.208 10.383 2.581 6.958 
 

0.67 

2010 Lexus LS Sedan 16.992 10.142 2.604 6.15 
 

0.61 

2010 BMW Coupe 14.308 8.725 2.467 6.342 
 

0.73 

2010 BMW Sedan 14.85 8.892 2.5 6.608 
 

0.74 

2010 Ferrari California 14.967 8.758 2.686 6.242 
 

0.71 

2010 Volkswagen Beetle 13.425 8.233 2.573 5.658 
 

0.69 

2007 Mini Cooper 12.088 8.091 2.169 5.502 
 

0.68 

2010 Honda Accord 
Sedan 

16.175 9.183 2.863 6.058 
 

0.66 

2010 Honda Odyssey 16.842 9.842 3.088 6.425 
 

0.65 

2009 Smart Car 8.842 6.125 1.215 5.115 
 

0.86 
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 The radii dependencies of curvature of the control parameter, obtained by the formula (1) 

are below (Fig. 5). 

 

 
 

FIGURE 5.  Dependence of radii of curvature of the control parameter for some cars. 

Максимальное значение угла Аккермана для всех марок автомобилей находилось из 

условия, что °= 40maxδ .  

 

 The width of the safe pathway when the vehicle is moving is determined by the 

difference between the distances to the far point of the vehicle and to the middle of the wheel 

from the center of the rotationO  (Fig. 4). 
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 The dependence of the width of the safe pathway are shown on the control parameter, 

obtained by the formula (4) are shown in Figure 6. 
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FIGURE 6. Width of the safe pathway for various values of the control parameterϑ . 

 

 From Figures 5 and 6 the wall-to-wall turning circle D  can be determined by the 

following equation: 








 ∆
+=

2
2

R
D ρ . 

For Smart Car and the Honda Pilot the turning circle is roughly equal to 18.2 and 25.8 feet 

respectively.   

 

 

6 Conclusion 
 For the simplest model of a vehicle, when it is modeled as a  rectangle, to obtain a 

universal one-parameter law of control of the vehicle (2), which allows to solve various 

kinematic and dynamic problems of its movement. Introduction of additional refining 

geometric characteristics of the vehicle does not make fundamental changes in the proposed 

mathematical model and may be implemented when necessary. The uses of the proposed 

model can be a significant refinement of algorithms of parallel parking, proposed in works 

[13-16], as well as the solution of navigation problems of management of motor vehicles 

using navigation systems GPS and GLONASS and problems of control of mobile robots with 

the help of tracking sensors. Formulas (1)-(4) may be useful in the design of motor roads, 

road interchanges, single-level and multilevel Parking lots, gasoline station, on-the-go fast 

food stations and the creation of car-simulators.  
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